Micropatterned surfaces to study hyaluronic acid interactions with cancer cells.
نویسندگان
چکیده
Cancer invasion and progression involves a motile cell phenotype, which is under complex regulation by growth factors/cytokines and extracellular matrix (ECM) components within the tumor microenvironment. Hyaluronic acid (HA) is one stromal ECM component that is known to facilitate tumor progression by enhancing invasion, growth, and angiogenesis(1). Interaction of HA with its cell surface receptor CD44 induces signaling events that promote tumor cell growth, survival, and migration, thereby increasing metastatic spread(2-3). HA is an anionic, nonsulfated glycosaminoglycan composed of repeating units of D-glucuronic acid and D-N-acetylglucosamine. Due to the presence of carboxyl and hydroxyl groups on repeating disaccharide units, native HA is largely hydrophilic and amenable to chemical modifications that introduce sulfate groups for photoreative immobilization (4-5). Previous studies involving the immobilizations of HA onto surfaces utilize the bioresistant behavior of HA and its sulfated derivative to control cell adhesion onto surfaces(6-7). In these studies cell adhesion preferentially occurs on non-HA patterned regions. To analyze cellular interactions with exogenous HA, we have developed patterned functionalized surfaces that enable a controllable study and high-resolution visualization of cancer cell interactions with HA. We utilized microcontact printing (uCP) to define discrete patterned regions of HA on glass surfaces. A "tethering" approach that applies carbodiimide linking chemistry to immobilize HA was used (8). Glass surfaces were microcontact printed with an aminosilane and reacted with a HA solution of optimized ratios of EDC and NHS to enable HA immobilization in patterned arrays. Incorporating carbodiimide chemistry with mCP enabled the immobilization of HA to defined regions, creating surfaces suitable for in vitro applications. Both colon cancer cells and breast cancer cells implicitly interacted with the HA micropatterned surfaces. Cancer cell adhesion occurred within 24 hours with proliferation by 48 hours. Using HA micropatterned surfaces, we demonstrated that cancer cell adhesion occurs through the HA receptor CD44. Furthermore, HA patterned surfaces were compatible with scanning electron microscopy (SEM) and allowed high resolution imaging of cancer cell adhesive protrusions and spreading on HA patterns to analyze cancer cell motility on exogenous HA.
منابع مشابه
Micropatterned cell co-cultures using layer-by-layer deposition of extracellular matrix components.
Micropatterned cellular co-cultures were fabricated using three major extracellular matrix components: hyaluronic acid (HA), fibronectin (FN) and collagen. To fabricate co-cultures with these components, HA was micropatterned on a glass substrate by capillary force lithography, and the regions of exposed glass were coated with FN to generate cell adhesive islands. Once the first cell type was i...
متن کاملPatterning microscale extracellular matrices to study endothelial and cancer cell interactions in vitro.
The extracellular matrix (ECM) of the tumor niche provides support to residing and migrating cells and presents instructive cues that influence cellular behaviours. The ECM protein fibronectin (Fn) enables vascular network formation, while hyaluronic acid (HA) is known to facilitate breast tumor development. To recapitulate aspects of the tumor microenvironment, we developed systems of spatiall...
متن کاملComparative clinical assessment of two nasolabial hyaluronic acid fillers: A double-blind, randomized controlled trial
Background: Various fillers have been used for the correction of nasolabial folds. This study investigated the efficacy and safety assessment of two hyaluronic acid (HA) fillers on moderate nasolabial folds. Methods: This study randomized 10 volunteers, aged 35 to 49 years, with moderate nasolabial folds. Volunteers received injections of HA A and HA B gels into the right or left skin folds. Th...
متن کاملمطالعه تغییرات اسید هیالورونیک ماتریکس خارج سلولی در کارسینومای کولون
Background: The extracellular matrix is a complex three-dimensional network of proteins and glycosaminoglycans, which have important roles in cellular physiology and cell-cell and cell-extracellular matrix interactions. Any changes in the extracellular matrix of tumors may be implicated in cellular transformation and metastasis. The aim of the present study was to identify changes in the hyalur...
متن کاملHyaluronic acid-based nanocarriers for intracellular targeting: interfacial interactions with proteins in cancer.
The therapeutic efficacy of most drugs is greatly depends on their ability to cross the cellular barrier and reach their intracellular target sites. To transport the drugs effectively through the cellular membrane and to deliver them into the intracellular environment, several interesting smart carrier systems based on both synthetic or natural polymers have been designed and developed. In rece...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of visualized experiments : JoVE
دوره 46 شماره
صفحات -
تاریخ انتشار 2010